The Internal Sequence of the Peptide-Substrate Determines Its N-Terminus Trimming by ERAP1
نویسندگان
چکیده
BACKGROUND Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini. METHODOLOGY/PRINCIPAL FINDINGS In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme's substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme's active site. This model can readily account for the strong preference for positively charged side chains. CONCLUSIONS/SIGNIFICANCE To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide's length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo.
منابع مشابه
The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum.
Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However, the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell res...
متن کاملSynthesis of nocistatin C-terminal and it’s amide derivatives as an opioid peptide
A new biological active hexapeptide of C-terminal of nocistatin, contains Glu-Gln-Lys-Gln-Leu-Gln sequence was synthesized according to solid phase peptide synthesis on the surface of 2-chloro tritylchloride resin and using fmoc-protected amino acids in the presence of TBTU (O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyl uranium tetrafluoroborate) as a coupling reagent. Then, amidation of the C-te...
متن کاملDominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 Peptidome through differential processing determined by multiple peptide residues.
OBJECTIVE To characterize the alterations, as well as their mechanisms, induced in the HLA-B27-bound peptidome expressed in live cells by the natural ERAP1 polymorphisms predisposing to ankylosing spondylitis (AS): R528K and N575D/Q725R. METHODS HLA-B*27:05-bound peptides were isolated from 3 human lymphoid cell lines expressing distinct ERAP1 variants differing at residues 528 and/or 575/725...
متن کاملExpression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines.
Peptide trimming in the endoplasmic reticulum (ER), the final step required for the generation of most HLA class I-binding peptides, implicates the concerted action of two aminopeptidases, ERAP1 and ERAP2. Because defects in the expression of these peptidases could lead to aberrant surface HLA class I expression in tumor cells, we quantitatively assayed 14 EBV-B cell lines and 35 human tumor ce...
متن کاملStructural insights into the molecular ruler mechanism of the endoplasmic reticulum aminopeptidase ERAP1
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an essential component of the immune system, because it trims peptide precursors and generates the N--restricted epitopes. To examine ERAP1's unique properties of length- and sequence-dependent processing of antigen precursors, we report a 2.3 Å resolution complex structure of the ERAP1 regulatory domain. Our study reveals a binding conformation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008